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MARKS OF PERMUTATION GROUPS AND ISOMER ENUMERATION 

E. Keith LLOYD 
Faculty of Mathematical Studies, University of Southampton, Southampton S09 5NEI, UK 

Abstract 

The concept of the mark of a permutation group is at least eighty years old, but 
comparatively little use has been made of it until recently. Redfield rediscovered marks 
in the 1930's, but his work was not published until 1984. He used them to count group 
reduced distributions according to their symmetry groups. In this paper, the Mark 
Version of Redfield's Superposition Theorem is used to count isomers. The method is 
compared with a related method used by H~selbarth, Mead and Fujita. 

1. Introduction 

A simple model for a molecule is to regard it as consisting of a skeleton with 
sites S~, $2 . . . . .  S, together with a collection of ligands L1,/-,2 . . . . .  L,, with one 
ligand placed in each site. The correspondence between sites and ligands may be 
specified by a two-line array 

[ Sr0)ST(2 ) . . .  S~(n) ], 

La(1)La(2) La(n).] 

where z- and o- are permutations of the set { 1, 2 . . . . .  n} and ligand Lcr(0 is in site 
S.r(i), i = 1 . . . . .  n. In general, the set of sites has a non-trivial symmetry group and 
so does the ligand set; furthermore, the order in which the columns of the array are 
written is unimportant. Thus, two arrays specify equivalent isomers if and only if 
one can be obtained from the other by a sequence of operations of the following 
three types: 

(1) permuting elements in row 1 by an element of the site group A; 

(2) permuting elements in row 2 by an element of the ligand group B; 

(3) permuting intact columns of the array by elements of the symmetric group 
Sym(n) consisting of all permutations of  the n columns. 

The number of distinct (inequivalent) isomers is the number of equivalence 
classes (orbits) under the action of  the three groups A, B and Sym(n). 

It was pointed out by Davidson [1] that this is a special case of the type of  
problem considered by Redfield in his 1927 paper [2]. Redfield considered q x n 
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arrays, but in this paper the general case is not needed, so results are stated for the 
case q = 2. In outline, Redfield's method for counting the number of inequivalent 
arrays (which he called group reduced distributions) is as follows. 

(1) Form the cycle index polynomials (group reduction functions) GrfA and GrfB 
associated with A and B. 

(2) Compose them together to form a new polynomial, denoted here by GrfA • GffB. 
(3) Calculate the sum of the coefficients of GrfA • GrfB - this is the number of 

inequivalent arrays. 

Fuller details, illustrated by chemical examples, may be found in ref. [3]. This 
procedure for counting group reduced distributions is often called the Superposition 
Theorem. 

Each of the group reduced distributions has its own symmetry group F (the 
point group of the isomer for the examples in this paper) and Redfield also attempted 
to count the number with a specified symmetry group. He showed that GrfA • GrfB 
is a linear combination of the cycle indices of the possible symmetry groups Fi. 
Specifically, if there are ~i structures with symmetry group Fi, then 

GffA * GffB = ~ ~/GffFi. (1) 
i 

Although Redfield was able to calculate the ~i in special cases, he encountered two 
difficulties in trying to solve the general problem: 

(1) non-isomorphic groups can have identical cycle indices; 

(2) the polynomials GrfFi are usually linearly dependent, so even if it is known 
which groups occur, eq. (1) cannot be solved uniquely for the ~i. 

The tool for finding the ~i is not the cycle index but the mark of a permutation 
group, details of which appear in the second edition of Burnside's book [4]. It 
appears, however, that Redfield had access to the first edition only, so he had to 
rediscover the theory of marks for himself (but he did not call them marks). By 
1940 he had the complete solution, not only to the problem posed in his 1927 paper 
but also to a more general problem in which the symmetric group Sym(n) acting 
on intact columns of the array is replaced by a general group F called the 
frame group; the groups A and B are called range groups and must be subgroups 
of F. Unfortunately, the paper which Redfield wrote in 1940 was not published until 
1984 [5]. 

The purpose of the present paper is to explain the Mark Version of Redfield's 
Superposition Theorem and to use it to count isomers according to their symmetry 
groups. 

2. Representations of groups 

A general problem in group representation theory is to break down a particular 
type of representation into simpler basic representations. The present paper is concerned 
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with permutation representations of groups, but since the theory of complex matrix 
representations is much better-known in mathematical chemistry (see, for example, 
Schonland [6] or Bishop [7]), this section summarises and contrasts certain results 
in the two theories. More detailed explanation of some of the terminology is given 
later. 

In the theory of complex matrix representations, group elements are represented 
by invertible matrices with complex numbers as entries, and the basic representations 
are irreducible representations. A finite group has only finitely many irreducible 
representations and any representation is equivalent to a direct sum of irreducible 
representations. The character of a representation is the function which maps each 
group element to the trace of the corresponding matrix. Conjugate elements have 
the same character and irreducible characters are equinumerous with conjugacy 
classes of elements. Character functions of irreducible representations are linearly 
independent and the decomposition problem is equivalent to expressing the 
character function of a given representation as a linear combination of irreducible 
characters. 

In the case of permutation representations, each group element is represented 
by a permutation of a set of objects and two objects are in the same orbit if there 
is a group element mapping one to the other. The basic representations are transitive 
permutation representations, that is, representations in which there is only one orbit. 
Again, a fiinite group has only finitely many transitive permutation representations 
and any permutation representation is a direct sum of such representations. Now the 
character of an element is just the number of objects fixed by the element, but the 
transitive permutation characters are usually linearly dependent, so a knowledge of 
them is insufficient to solve the decomposition problem. 

A transitive permutation representation of G may be obtained by taking any 
subgroup H < G and letting G act on the cosets Hk of H in G by right multiplication, 
g:Hk---) Hkg. Conjugate subgroups produce equivalent representations and any 
transitive permutation representation is equivalent to such a representation on cosets 
of some subgroup H. In fact, if an object 09 is chosen from the set, then it is possible 
to take H as the subgroup of all permutations which fix co (the group H is then called 
the stabilizer of co). Hence, whereas irreducible representations of a group G are 
equinumerous with conjugacy classes of elements of G, transitive permutation 
representations are equinumerous with conjugacy classes of subgroups of G. The 
mark of a subgroup H < G in a permutation representation (transitive or intransitive) 
is the number of objects invariant under every h ~ H. The mark functions of transitive 
permutation representations are linearly independent, and for permutation representations 
it is the marks, not the characters, which provide the means to solve the decomposition 
problem. 

In the case of group reduced distributions, the analogue of  equation (1) is 

re(A) (~ re(B) = ~ i m ( F i ) ,  
i 
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where mark vectors m (see section 3) replace cycle indices. This equation can be 
solved uniquely to find the number ~i of  group reduced distributions with symmetry 
group Fi. 

3. Permutation representations and their marks  

Much of the basic theory of permutation representations, including marks, 
may be found in Burnside [4], but certain terminology has changed in the intervening 
eighty years and here more modem terminology is used. Apart from Burnside, 
few textbooks make any mention of  marks, but a recent one which does is 
Krishnamurthy [8]. 

Let G be a finite group and let ~r be a homomorphism from G to a group of  
permutations of  a finite set ff2. This means that each element g ~ G is represented 
by a permutation zrg of  ff2. It is customary to say that g acts on f2 or that f2 is a 
G-set (or G-space) and to write cog rather than ~rg(co) for the result of  applying the 
permutation tog to the element co ~ fL 

DEFINITIONS 

The following sets play important r61es in the theory. 

(1) Orb(co)= {V~g21V=cog  forsome g ~ G } ,  called the orbit of  c o ~ f L  

(2) Sta(co) = {g ~ G lco = cog}, called the stabilizer of co ~ ff2; it is a subgroup 
of G. 

(3) Fix(g) = {co E £'21 co = cog}, called the fixed point set of  g E G. 

(4) Fix(H) = {co ~ ~lco = coh, for all h ~ H}, called the f ixed point set of  the 
subgroup H < G. 

All the above sets are defined with respect to a fixed representation ~z and 
when necessary to avoid ambiguity, they may be written Orbs(co), etc. 

DEFINITION 

Let ~r be a permutation representation (transitive or intransitive) of  a group 
G on ff2. The G-mark m~n of  the subgroup H in the representation zc is defined by 
m,rn =lFix,~(H)l, where IXI denotes the number of  elements in the set X. 

In the case of  a cyclic subgroup C < G, the set Fix(C) = Fix(c), where c is 
any generator of  C, and m,~c = Z,~(c), the permutation character of  c. 

If two subgroups are conjugate, then they have equal marks in the representation, 
so to find all transitive representations of  G, it suffices to consider a complete set 
of  representative subgroups H 1, H 2 . . . . .  H t < G, one for each conjugacy class. 

The marks of transitive permutation representations are of particular interest. 
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DEFINITION 

The table of  marks, or mark matrix, of a group G is the matrix M(G) with 
(i, j ) - en t ry  mij equal to the mark of  the subgroup Hj in the representation zci on the 
cosets of  H i in G. (The mark mij is also known as the mark of  the subgroup Hj in 
the subgroup H i.)  

It can be shown that mij = 0 unless Hj is conjugate to a subgroup of  H i and 
that mii > 1 for any i. Because of this, if the representative subgroups are numbered 
in increasing order of  size, then the table of  marks is lower triangular and since it 
has no zero entries on the main diagonal, it is an invertible matrix. Redfield, 
however, adopted a slightly modified ordering in which the cyclic subgroups are 
numbered before the non-cyclic ones; this still gives a diagonal matrix. 

t7 

d 

6" 

Fig. 1. Tetrahedron. 

Example 1 

The symmetric group Sym(4) of  all permutations of  four objects may be 
thought of  as the tetrahedral group Td acting on the four vertices a, b, c, d of  a 
tetrahedron (see fig. 1). It has eleven conjugacy classes of subgroups and representative 
subgroups may be chosen and ordered as follows (see Foulkes [9]): 

H I = E  = 

H2 = Cs = 

H 3 = C  2 = 

H 4 = C  3 = 

H s = S  4 = 

H 6 = D  2 = 

H7 = C2v = 

H8 = C3v = 

{e}, 

{ e, (ab) }, 

{ e, (ab) (cd) }, 

{ e, (abc), (acb }, 

{e, (abcd), (ac) (bd), (adcb)}, 

(e, (ab)(cd), (ac)(bd), (ad)(bc)}, 

{e, (ab), (cd), (ab) (cd) }, 

Sta(a) -- Sym(3), 
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H 9 = D ~  = {e, (ac), (bd), (ac) (bd), (abcd), (adcb), (ad) (bc), (ab) (cd)}, 

Hlo = T = Alt(4), 

Hll = Ta = Sym(4), 

where Alt(n) is the alternating group of all even permutations of  n objects. 
The corresponding table M(Ta) of marks of Ta, omitting zeros above the main 

diagonal is 

2 4  

12 2 

12 0 4 

8 0 0 2 

6 0 2 0 2 

6 0 6 0 0 

6 2 2 0 0 

4 2 0 1 0 

3 1 3 0 1 

2 0 2 2 0 

1 1 1 1 1 

6 

0 2 

0 0 1 

3 1 0 

2 0 0 

1 1 1 

1 

0 2 

1 1 

Clearly, the rows of  a mark matrix M(G) are linearly independent. Each entry 
in column 1 gives the number of  cosets in the corresponding representation, and the 
last row consists entirely of ones since there is only one coset for the subgroup 
Ht = G. Some authors (including Krishnamurthy [8] and Mead [10]) arrange the 
subgroups in decreasing order of size and this has the effect of  transposing the mark 
table about the top-right/bottom-left diagonal. With such an ordering, the first 
column consists entirely of ones and the order of  the matrices in the products below 
must be reversed. 

DEFINITION 

Row i of the table of marks M(G) is called the mark vector mOri) of the 
representation ~ri. More generally, if ~r is any representation of G (not necessarily 
transitive), then the mark vector (or, as Fujita [11] calls it, the fixed point vector) 

m(~r) = (m~,  mu2 . . . . .  mr,), 

where mrc i is the mark of H i in zc. 
When geometrical or chemical permutation representations occur, they do not 

usually present themselves immediately in terms of permutations of cosets of  subgroups. 
In some cases, however, it is easy to construct an equivalent representation on cosets. 
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Example 2 

For Ta acting as in example 1, the stabilizer H = Sta(a) of  vertex a is a C3v 
and the coset decomposition may be written 

Ta = H u H(ab) u H(ac) u H(ad). 

Provided one reads products of  cycles from left to right, the cosets are: 

H= {e,(bcd), (bdc), (cd), (bd), (be)}, 

H(ab)  = {(ab), (acdb), (adcb), (ab)(cd) ,  (adb), (acb)}, 

H(ac) = {(ac), (adbc), (abdc), (adc), (ac) (bd), (abe)}, 

H(ad) = {(ad), (abcd), (acbd), (acd), (abd), (ad)(be)}. 

Adopting the convention that ( . . .  x y . . .  ) or ( y . . .  x) in a cycle means that 
vertex x moves to where vertex y used to be, then 

(1) coset H consists of  all elements fixing a; 

(2) for x = b, c, d, coset H(ax) consists of  all elements moving vertex a to the old 
position of  vertex x. 

t7 

b P c 

d 

Fig. 2. Tetrahedron with two 
black and two white verticcs. 

Example 3 

Let Ta act on a tetrahedron with two black vertices a, b and two white 
vertices c, d (see fig. 2). In this case, H = Sta(a) is a C2v. The coset decomposition 
is 

Ta = H u H(ac) (bd) w H(bc) w H(ad) u H(bd) w H(ac), 

but it is more illuminating to express the elements as permutations of  the edges 
p, q, r, s, t, u of  the tetrahedron. The decomposit ion becomes 

Ta = H u H(qp) (ut) u H(rp) (sq) u H(sp) (rq) u H(tp) (uq) w H(up) (tq). 
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Here, 

(1) 
(2) 
(3) 

each element in coset H fixes edge p; 

each element in H(qp)(ut) moves edge q to the old position of p; 

for x=  r ,s ,  t, u, each element in H(xp)(yq) moves edge x to the old 
position of p (and, necessarily, the edge y opposite to x to the old position 
of edge q). 

4. The Mark Version of Redfield's Superposition Theorem 

In section 1, the group A acts on elements in the first row of the array. Let 
ra(A) be the F-mark vector corresponding to the action of F on the cosets of A in 
F. Similarly, B acts on elements of the second row of the array and has F-mark 
vector m(B) corresponding to the action o f F  on the cosets of B. Now if Hi < F fixes 
mAj cosets Afand mBj cosets Bg, then it fixes mAjmsj pairs (Af, Bg) of cosets. Hence, 
the mark vector for the action of F on ordered pairs of cosets is the coordinate-by- 
coordinate product denoted here by re(A) 63 m(B) and defined by 

re(A) 63 re(B) = (mAlmB1, mA2mB2 . . . . .  mAlml~t). 

Redfield's technique [5] for counting group reduced distributions according 
to their symmetry groups may be summarised as follows. 

SUPERPOSITION THEOREM (MARK VERSION) 

Let M(F) be the table of marks of a frame group F, the rows and columns 
of which correspond to representative subgroups Ha, H2 . . . . .  Ht and let A, B < F 
be range groups. The number ~i of group reduced distributions which have a symmetry 
group conjugate to H i may be obtained by the following algorithm: 

(1) Calculate the F-mark vectors m(A) and re(B) of A and B, respectively. 

(2) Multiply them together coordinate by coordinate to obtain the vector 
re(A) 63 re(B). 

(3) Find the vector ~ = (~1, ~2 . . . . .  ~t) such that 

re(A) 63 m(B) = ~M(F). (2) 

O' 

C 

Fig. 3. Trigonal pyramidal skeleton. 
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Example 4 

Let A be the full symmetry group (including reflexions) of the set of  sites 
a, b, c, d on a trigonal pyramidal skeleton (see fig. 3) and let the ligand collection 
be XXYZ. The site group A is a C3v and the ligand group B is a symmetric group 
Sym(2) generated by the permutation that interchanges the two identical ligands. 
From rows 2 and 8 of the table M(Ta) of marks, 

and 

SO 

m ( B ) = [ 1 2 2 0 0 0 0 0 0 0 0 0 ]  

m ( A ) = [ 4 2 0 1 0 0 0 1 0 0 0 ] ,  

re(A) 63 re(B) = [484 0 0 0 0 0 0 0 0 0]. 

Expressed as a linear combination of rows of M(Ta), 

SO 

m(A) 63 re(B) = [24 0 0 0 0 0  0 0 0 0 0 ]  + 2112 2 0 0 0 0  0 0 0 0  0], 

re(A) 63 re(B) = re(E) + 2m(Cs). 

The interpretation is that placing the ligands X2yz on a skeleton with C3v symmetry 
leads to three distinct isomers, one with E as point group and the other two with 
Cs. For such a simple example, this is easy to check and the three isomers are shown 
in fig. 4. 

X Y Z 

X y X X 
E Cs C, 

Fig. 4. Isomers with trigonal pyramidal skeleton and ligands XXYZ. 

A similar procedure is possible for any collection of ligands and, by replacing 
some of the vectors by matrices, all cases may be treated simultaneously. The 
possible ligand collections are WXYZ, XXYZ, XXYY, XXXY, XXXX. The corresponding 
ligand groups are E, Sym(2), Sym(2) × Sym(2), Sym(3), Sym(4), respectively. Their 
Ta-mark vectors form the rows of the matrix N(L) below. 
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N(L) = 
12 2 
6 2 2 0 0 0 2 
4 2 0 1 0 0 0 1 
1 1 1 1 1 1 1 1 1 1 1 

The product m(A) 63 m(B) can be written as a matrix product provided one of  the 
vectors is replaced by a diagonal matrix. Here, a fixed skeleton is under consideration, 
so it is preferable to write m(A)63 re(B)= m(B)diag re(A), but it would also be 
possible to consider a fixed ligand collection and all the symmetry types of  skeletons 
to which the ligands could be attached. Equation (2) becomes 

m(B) diag m(A ) = 4M(F). 

Working with N(L) rather than with m(B) gives the matrix A, where 

N(L) diag m(A) = A = EM(F) ,  (3) 

and the entry 4ij in the isomer counting matr& E is the number of  isomers with 
symmetry group Hj which may be formed using the ith ligand collection. 

Since M = M(F) is invertible, it follows from (3) that 

,=. = A M  -1,  

and from (2) that 

4 = (m(A) 63 m(B))M -1. 

In practice, however,  it is not necessary to calculate M -~. One needs to express 
re(A) 63 re(B) as a linear combination of  the rows of  M. Because M is triangular, 
working from the bottom row to the top row in M very quickly produces the 
coordinates of  ~ in the reverse order 4t . . . . .  42, 41. A similar calculation can be 
done separately for each row of  A in order to obtain E. 

In the present example, the matrices in eq. (3) are: 

[2i 1 12 2 
2 2 0 0 0 2 
2 0 1 0 0 0 1 
1 1 1 1 1 1 1 1 1 1 

4 
0 2 
0 0 0 
0 0 0 1 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

0 
0 0 
0 0 
0 0 
0 0 
0 0 

1 
0 0 
0 0 
0 0 

0 
0 
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196 ] 48 4 
= 24 4 0 0 0 0 0 

1 6 4 0 1 0 0 0 1  
2 0 1 0 0 1 0 0 0 

[i = 2 0 0 0 0 0 
1 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 0 0 

"24 
12 2 
12 0 4 

8 0 0 2 
6 0 2 0 
6 0 6 0 
6 2 2 0 
4 2 0 1 
3 1 3 0 
2 0 2 2 
1 1 1 1 

2 
0 6 
0 0 2 
0 0 0 
1 3 1 
0 2 0 
1 1 1 

1 
0 1 
0 0 2 
1 1 1 

Here, the fourth rows of  A and E correspond to ligands XXXY. Since 

[ 1 6 4 0 1 0 0 0 1 0 0 0 ] = [ 1 2 2 0 0 0 0 0 0 0 0 0 ] + [ 4 2 0 1 0 0 0 1 0 0 0 ] ,  

or, equivalently, 

m(C3v) Q m(C3~) = m(Cs) + m(C3v), 

it follows that with ligands XXXY there are two isomers, one with Cs symmetry and 
one with C3~ (see fig. 5). 

X Y 

X X 
cs x x 

Fig. 5. Isomers with trigonal pyramidal skeleton and ligands XXXY. 

A great many zeros occur in the above matrices, so it is possible to delete 
various rows and columns which provide no relevant information. Let: 

(1) N'(L), A' and E '  be the submatrices of  N(L), A and E obtained by deleting 
those columns which do not correspond to subgroups of  A; 

(2) m'(A) be the subvector of  m(A) obtained by deleting coordinates which do 
not correspond to subgroups of  A; 
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(3) M'(A) be the submatrix of  M(F) obtained by deleting both rows and columns 
which do not correspond to subgroups of  A. 

Then, from eq. (3), 

N'(L) diag m'(A) = A' = E 'M' (A) .  (4) 

In example 4, where F = Ta and A = C3v, the reduced matrices are 

24 
12 2 
6 2 0 
4 2 1 
1 1 1 

4 
0 

1 0 
1 0 

2 
0 1 
0 0 

96 
48 

= 24 

1 146 

4 
4 0 
4 1 
2 1 

1 
1 

4 
1 2 
0 2 0 
0 1 0 1 
0 0 0 1 

[21] 12 2 
0 2 " 
2 1 1 

5. A l t e r n a t i v e  c a l c u l a t i o n s  using marks  

In the examples in section 4, all marks are marks with respect to the group 
Ta = Sym(4). In general, the groups A and B must be subgroups of  F. In the case 
where the ligands are all different, B = Sym(n), so it seems to be necessary to take 
the frame group F = Sym(n) and, therefore, to work solely with Sym(n)-marks 
when using the Superposition Theorem to count isomers. However,  in their papers, 
H~sselbarth [12], Mead [10], and Fujita [1 1] use Sym(n)-marks for the ligand group 
B only; they use A-marks for the site group A. In some cases (as explained below), 
the two methods are entirely equivalent, but in other cases, they produce slightly 
different results. 

The diagonal matrix diag m'(A) is invertible, so (4) may be rewritten: 

Let 
N'(L) = E ' M ' ( A )  (diag m'(A))  -1. 

M"(A) = M'(A) (diag m '(A)) -1. 

so that 

(5) 

N'(L) = E 'M"(A) .  (6) 

The construction 

M(Sym(n))  ---) M'(A) --) M"(A) 

consists of  deleting redundant rows and colums from M(Sym(n))  to obtain M'(A) 
and then scaling each column of  M'(A) so that the resulting matrix M"(A) has ones 
in the last row. In example 4, [24 j [6 ] 

M ' ( A ) =  12 2 3 1 
8 0 2 ' M " ( A ) =  2 0 2 • 
4 2 1 1 1 1 1 1 
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In this example, M"(A) = M(A), the table of  marks of  A, so (6) can be rewritten: 

N'(L) = E'M(A). (7) 

In general, however, M"(A) ~ M(A). For example, two subgroups which are non- 
conjugate in A may be conjugate in Sym(n) by an element which lies outside A. In 
such a case, the matrices M"(A) and M(A) are different sizes. Nevertheless, it still 
seems to be the case that there are corresponding matrices N"(L) and E" such that: 

N"(L) = E"M(A). (8) 

An equation of this form is used by H~isselbarth [12], Mead [10], and Fujita [11] 
in some of  their calculations on isomer enumeration. The rows of  N"(L) are mark 
vectors of  a hybrid nature: their entries are Sym(n)-marks, but the columns correspond 
not to conjugacy classes of subgroups of Sym(n) but to conjugacy classes of subgroups 
of  A. 

Example 5 

The group C2v has five conjugacy classes of  subgroups, with representatives 

H1 = E = (e}, 

H2 = Csh = (e, (ab)}, 

H3 = Csv = (e, (cd)}, 

H 4 = C 2 = {e, (ab)  (cd)),  

H5 = C2v = (e, (ab), (cd), (ab) (cd)}, 

Its table of  marks is 

2 
0 2 
0 0 2 
1 1 1 1 

When C2v is considered as a subgroup of  Td, the subgroups H 2 and H 3 a r e  conjugate 
under (ac)(bd) since 

(ac) (bd) × (cd) × (ac) (bd) = (ab). 

j c 

J a ......... 

Fig. 6. Skeleton with C2u symmetry. 
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A geometrical explanation may be given by considering the action of  C2v on the 
sites a, b, c, d in fig. 6. Here, a, b lie in a horizontal plane, c, d lie in a vertical 
plane, and bond lengths am = bm ~ cm = dm. Each of the subgroups/ /2  and H 3 is 
a C~, but they are sometimes distinguished by calling them C,h and Cso. In the 
action under Car, the sets {a, b} and {c, d} form separate orbits but the action under 
Sym(4) places all four into a common orbit - the latter action ignores the differences 
in bond lengths. A calculation using the Superposition Theorem with Sym(4) marks 
and reduced matrices gives 

24 
12 2 
6 2 2 2 
4 2 0 0 
1 1 1 1 

[i 2 0 2  
0 0 2  

144 ] 
72 4 

= 36 4 4 4 
24 4 0 0 

6 2 2 2 

[ oo l 2 = 2 12 2 
0 12 0 4 " 

0 0 1 6 2 2 2 

Using M"(A), the matrices are 

[2412 2 1[i o2 1 6 2 2 2 = 0 2 1 
4 2 0 0 2 0 0 2 " 
1 1 1 1 0 0 1 l 1 1 

By contrast, the corresponding calculation using eq. (8) and the C2~, mark 
table is 

24 1 i  6 12 2 2 2 1 1 
6 2  2 2  2 =  1 0 0 0 2  
4 2 2 0 0  0 1 1 0 0 
1 1 1 1 1 0 0 0 0 1 

4 
2 2  
2 0 2  
2 0 0 2  
t 1 1 1 1  

The single column in N'(L) corresponding to Cs is replaced in N"(L) by a pair of  
identical columns, one for Csh, the other for Csv. Consequently, the second column 
c o 1 ( 2 0 2 0 )  in E' splits into two separate but identical columns c o l ( 1 0 1 0 )  in E". 
So the second calculation counts isomers with C,h symmetry separately from those 
with C,v symmetry;  the first calculation does not. The isomers corresponding 
to the entries in E"  (apart from those with four different ligands WXYZ) are shown 
in fig. 7. 



E.K. Lloyd, Marks of permutation groups 221 

Group 
Ligands E % c,, c2, 

Q O 0 ~  

0 0 0 0  

O Q I O  

O Q D O  

> 

Fig. 7. Isomers with C2v skeleton. There are also six with four 
different ligands (any two of which may be in sites a and b); all 
of these have E symmetry. There are no isomers with C z symmetry. 

6. Concluding remarks 

It is often possible to formulate a problem in terms of frame group and range 
groups in more than one way and different formulations may involve different 
numbers of range groups. This suggests that there may be a reformulation which 
enables eq. (8) to be deduced directly from the Superposition Theorem, but it is not 
immediately clear how this might be done. 

In the P61ya theory of enumeration, much use is made of  generating functions 
(see Pdlya [13], Read [14], and Lloyd [15]). Both H~isselbarth [12] and Fujita [111 
have used generating functions in combination with marks. 

Several papers have appeared in the chemistry literature on the use of double 
cosets in isomer enumeration (see, for example, Brocas [16], and Mead [10]). Both 
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the original Redfield Superposition Theorem and the Mark Version may be construed 
in terms of  double cosets; further details may be found in Hall, Palmer and 
Robinson [17]. 

Redfield 's  second paper was not published until forty-four years after it was 
written and in the meantime, some of the results in it were rediscovered independently 
by other authors. Hall et al. [17] discuss the relationship between Redfield 's  results 
and those in more recent articles. 

Note added in proof 

Burnside first introduced marks in 1901 
[19,20] include mark tables for several groups, 

(see ref. [18]); two recent books 
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